Forward Tagging as a Probe of Hadronic and Nuclear Dynamics

Charles Hyde
Old Dominion University

EIC Users Group Meeting

Forward Spectrometer: $\Delta p/p = \pm 0.5$, $\theta = \pm 8mr$

Interaction Point

Electron Collider Ring

Booster

Ion Source

12 GeV CEBAF

Charles Hyde

EIC UG

The Tools of DIS

- Basic Variables: Q^2 , x_{Bi}
 - $\alpha_S(Q^2) < 0.5$ for $Q^2 > 1$ GeV²
 - Transverse spatial resolution $\delta b \sim 1/[Q^2]^{1/2}$
 - Longitudinal coherence length of virtual photon $\lambda \approx 1/(2Mx_{Bi})$
 - $x < 0.1 \leftrightarrow \lambda \ge 1 \text{ fm}$

Final States: DIS & Diffractive DIS

Deep Inelastic Scattering (DIS)

Proton Remnant:

- Di-quark/ tetra-quark color triplet
- Color octet

Diffractive Scattering (DDIS)

• $\sim 10\%$ of HERA DIS events

Rapidity Gap: $\Delta \eta \ge 2$

Correlations between Current & Target fragments

• Chiral Symmetry Breaking: Parton-parton correlations at $p_T \sim \Lambda \chi \sim 1$ GeV.

- Coincident hadrons in target and current fragments, with correlated & spin-dependent p_T .
- Multiparton interactions in LHC pp collisions do not scale as average density
- Interference Fragmentation $\phi_2 - \pi$ Functions measured in BELLE: A Vossen et al, PRL **107**, 072004

(2011)

P. Schweitzer, Ch. Weiss, M. Strikman, JHEP **1301** (2013) 163

• Identify ion beam fragments over broad range of p_T

Deep Virtual Exclusive Scattering Transverse Spatial Imaging $vs. x_{Bi}$

Detector Acceptance

• eRHIC: new IR design: $0.18 \le p_T$

• JLEIC: Far-Forward spectr. $0.0 \le p_T$ for $x_{Bi} > 0.003$

Acceptance for p' in DDIS/DVES

DIS and Many Body Nuclear Dynamics

- DIS at different x, Q² ranges probes particular configurations in the nucleus
- Forward tagging of spectator/recoil nucleons... to observe the dynamics of the active configurations.
- Illustrative Examples:

• x>1

~6-quark bags

• 0.2 < x < 0.7

Nuclear Binding, Short Range Correlations

• $x \approx 0.1$

Anti-shadowing: Hard Core on NN Force

• x < 0.1

Coherent Diffraction: Multiple nucleons

• $x \ll 0.1$, $Q^2 \gg 1 \text{ GeV}^2$

Coherence → Saturation Transition

Nuclear Dynamics Probed by DIS: I

- Kinematic bound: $x_{Bi} < A$
- $x_{Bj} > 1$
 - Parton momentum fraction generated by interaction of at least two nucleons

- $x_{Bi} > 2$
 - Probe three body forces.

Nuclear Dynamics Probed by DIS: II

- $0.2 < x_{Bj} < 0.8$ EMC Effect
- Quark-Gluon structure of nuclear binding at scale $1/(2x_BM) \le 0.5$ fm
 - Incoherent over quarks in different nucleons or exchanged mesons

The EMC Effect

- Quark-gluon imprint of Nuclear Binding
- NN Correlations

FIG. 2: Per-nucleon cross section ratios vs x at $\theta_e{=}18^\circ$

Charles Hyde EIC UG 8 July 2016 $oxed{1}$

Nuclear Final State in DIS

- Active program at JLab12 to study NN pairs emitted in nuclear DIS
 - isospin structure
 - Low p_{Rel} vs high p_{Rel}
 - Forward nucleons from ³H/³He (Hall A 2017)
 - Backward nucleons in heavy nuclei: Hall B, Hall C →

Nuclear Final State at EIC

Naive spectator kinematics:

$$p_i^\mu = \left[rac{lpha_i}{A}P_A^+, \mathbf{p}_{i,T}, p_i^-
ight] \ \sum_{i=1}^A lpha_i = A \qquad \sum_{i=1}^A \mathbf{p}_{i,T} = 0$$

• Fermi gas: $|\alpha_i-1| \approx p_F/M \approx 0.25$

$$\mathbf{p}_{i,T} \leq p_F$$

• In a heavy nucleus of momentum $Z \cdot (100 \text{ GeV/c})$, spectator neutrons, protons have laboratory momenta $(p_{11}, p_T) \approx [\alpha_i(40 \text{ GeV/c}), \mathbf{p}_{i,T}]$

Forward Tagging!

DIS on the Deuteron: Spectator Tagging

- $\alpha_p \approx 1$, $\mathbf{p}_{p,T} \approx 0$ \rightarrow on-shell extrapolation of DIS on neutron
- Calibrate with ZDC tagging of spectator neutron
 - $30\%/E_n^{1/2} \approx 4\%$ @ 50 GeV $\delta\alpha_p \approx 0.04$ \Rightarrow Rest frame resolution of initial NN relative momentum ~ 40 MeV/c for DIS on nearly on-shell proton
 - $/1-\alpha_P/>0.2$
 - EMC effect in Deuterium!

DVES on Deuteron

- Coherent d(e,e'd V)
 - Tensor polarized beam: Observe quark-gluon structure of tensor interaction.
- Incoherent d(e,e'pnV)
 - Miller, Sievert, Rajugopalan, www.arXiv.org/1512.03111
 - Low mass NN final state ≈ independent nucleons
 - High mass NN final state → probe spatial size of interacting pair

Nuclear Dynamics Probed by DIS: III

- $x_{Bj} \approx 0.1$: "Anti-Shadowing"
 - $q(x) + \overline{q}(x)$ enhanced (DIS)
 - No $\overline{q}(x)$ enhancement seen in Drell-Yan.
 - Hard Core of NNinteraction from q-q-g exchange?
 - Expect gluon anti-shadowing (enhancement in nuclei)
 - JLab LDRD program to study open-charm in nuclear DIS

Nuclear Dynamics Probed by DIS: IV

• x_{Bj} < 0.05: "Shadowing"

 Coherent diffractive scattering from ≥ 2 nucleons

- Interference is automatically destructive by virtue of NN antisymmetry
- NN pair must be back-to-back
 - Transverse resolution 1/Q² postselects nuclear state
- Shadowing is a ~100% effect on the ~10% of DIS events that are diffractive

Nuclear Initial and Final States in Diffractive DIS.

 Incoherent Diffraction: A clean probe of multi-nucleon dynamics.

Only low-energy NN, NNN... FSI

Event-by-event initial & final state:

 Elliptical source ≥ 2 nucleons

EIC UG

Elliptic flow?

Color-neutral $\delta b > 1/[Q^2]^{1/2}$ No FSI!

Destructive Interference: active/spectator in NN pair

18 8 July 2016

Charles Hyde

Geometry tagging (w/o shadowing)

Intra-nuclear cascading increases with d (forward particle production)

Leads to more evaporation of nucleons from excited nucleus (very forward)

JLab LDRD FY2017 proposal Nadel-Turonski, Baker *et al*

Role of ballistic nucleons: Lappi, Mäntysaari, R. Venugopalan, PRL **114**

Tagged eAu (samples scaled to same area)

DIS @ $x_{Bj} \ll 0.1$

- DIS probes fluctuations with coherence length λ much greater than nucleon or even nuclear size.
- Precursor to saturation
- Low energy probes cannot distinguish these from vacuum fluctuations

Animations at

www.physics.adelaide.edu.au/theory/staff/leinweber

Conclusion

- A High Luminosity Polarized Electron Ion Collider is an unprecedented tool to quantitatively explore the quark-gluon dynamics of
 - the Origin of the Mass of mesons and baryons
 - The creation of mass as a quark or gluon propagates through cold QCD matter
 - Vacuum
 - Nucleus
 - Nuclear Binding
 - NN Force
 - NNN Force
- These are exciting, challenging questions.
 - We can make progress
 - This will resonate with the larger scientific community

Backup Slides

Nuclear Dynamics Probed by DIS: II

- $0.2 < x_{Bj} < 0.8$ EMC Effect
- Quark-Gluon structure of nuclear binding at scale ≤ 0.5 fm
- Nucleons modified by strong scalar+vector fields
- Quark-gluon structure modified by short range NN correlations
 - qq-bar condensates modifed from free nucleon: Nuclear Mean Field + rms fluctuations (NN... Correlations)

EMC Effect': Anti-Shadowing

Anti-shadowing is not anti-quarks!FermiLab Drell-Yan E722

8 July 2016

• Anti-shadowing is glue

Gluons & Nuclear Binding

Shadowing (coherent gluons from NN, NNN ...)

ALICE PLB718 (213)
 ultra-peripheral
 AA → AA J/Ψ
 ...CMS 2016
 Fig. from Guzey, Zhalov,
 arXiv.org/ 1404.6101

Expectation of gluonic anti-shadowing at $x \approx 0.1$

5

R

SPECTATOR TAGGING

• Spectator Tagging:

$$p_R = p_p^{\{+,\perp,-\}} = \left[\frac{\alpha}{2} P_D^+, \, \mathbf{p}_{R\perp}, \, \frac{M^2}{\alpha P_D^+} \right] pprox P_D^\mu / 2$$

• Impulse Approximation:

$$p_n^2 = (P_D - p_R)^2 = t = M_n^2 + t'$$

 $-t' > M_D B + B^2/2 = 4.1 \cdot 10^{-3} \text{ GeV}^2$

• In Deuteron rest-frame:

$$\mathbf{p}_p o rac{(\alpha - 1)}{2} M_N \hat{z} + \mathbf{p}_{\perp}$$
 for $\alpha \approx 1$ and $|\mathbf{p}_{\perp}| << M_N$

• In Collider Frame:

$$\mathbf{p}_p pprox rac{1}{2} \mathbf{P}_D + \mathbf{p}_{\perp}$$
 $\mathbf{p}_p pprox rac{lpha}{2} \mathbf{P}_D + \mathbf{p}_{\perp}$

ON-SHELL EXTRAPOLATION

• Spectator Tagging in Impulse Approximation:

$$p_n^2 = (P_D - p_R)^2 = t = M_n^2 + t'$$

-t' > $M_D B + B^2 / 2 = 4.1 \cdot 10^{-3} \text{ GeV}^2$

• Example on-shell extrapolation

$$k_e \otimes P_D = 5 \otimes 100 \text{ (GeV/c)}^2$$

$$\int \mathcal{L}dt = 1 / \text{fb}$$

 $x_{\rm Bj} \in [0.025, 0.032], \ Q^2 \in [10, 20] \ {\rm GeV}^2$

$$0.98 \le \alpha < 1$$
 $1.0 < \alpha \le 1.02$

NEUTRON F₂ FROM ON-SHELL EXTRAPOLATION

- A sample bin in Q^2
 - Error bars are statistical
 - Error band is systematic error from assumed 10% uncertainty in incident beam emittance
- Radiative effects not yet included.
- QCD Evolution not yet included.

NEUTRON SPIN STRUCTURE

Longitudinal Double Spin Asymmetry on the Neutron

x-dependence at fixed Q^2

 Q^2 -dependence at fixed x

THE EMC EFFECT IN THE DEUTERON

In a given bin in (x_{Bj}, Q^2) :

- First extrapolate to the on-shell point for $\alpha \approx 1$
- Compare IA (dashed) with pseudo- data (solid) at 'large' negative α - 1
 - α < 1 minimizes FSI
 - EMC Effect modeled via *t'*-dependent form factor
- Illustrated Luminosity is 10 / fb

